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Abstract

This is a supplementary note for the main paper Generalized cluster structures on SLL that
contains explicit examples of generalized cluster structures compatible with 77} in type A,_1,
as well as a list of some of the instrinsic problems of the theory. This note will be updated over
time.
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1 Summary of the hA-convention

In this section, we outline the construction of birational quasi-isomorphism for QCL(I‘), as well as
the construction of the initial extended cluster. For all the other information, refer to the main

paper [3].

1.1 The maps F, Q and G

Notation. For a generic element U € GL,,, the element Ug, € GL,, is an upper triangular matrix
and U_ € GL, is a unipotent lower triangular matrix, such that U = UgU_.

The map F. LetI':= (I'1,'2,7) be a BD triple of type A,_;. Define the sequence F : GL,, --»
GL,, of rational maps via

FolU) :=U, Fp(U):=7"Fr1(U)-]U, k>1. (1.1)
The birational map F : GL, --+ GL,, is defined as the limit

FU) := lim Fi(U). (1.2)

k—o0
Since « is nilpotent, the sequence Fy, stabilizes at k = deg~y, so F(U) = Fgeg~(U). The inverse of
F is given by
F LUy =5 U (1.3)
The map F is neither a Poisson map nor a quasi-isomorphism. However, by means of F one can

construct Poisson birational quasi-isomorphisms. For various invariance properties of F, refer to
[3, Section 4.2].

Birational quasi-isomorphisms. Define the birational map Q : GL,, --+ GL,, via

Q) = p(U) ' Up(U), pU):=]]FTU-). (1.4)
i=1
The inverse of Q is given by
Q1 (U) := F(U) == FU)V(F(U)-) " (1.5)

Let W{: and WSTt 4 be the Poisson bivectors associated with an arbitrary BD triple I' and I's¢q (of type

Ap—1), respectively. If the rqg parts of WI‘ and W;Ltd are the same, then Q : (GL,,, Wltd) --» (GL,, w{i)

is a Poisson isomorphism. Moreover, as a map Q : (GLn,gCL(FStd)) --3 (GLn,QCIL(I‘)), it is a
birational quasi-isomorphism, with the marked variables given by

{hi+1,i+1 ’ 1 E FQ}. (1.6)

If I' < T is another BD triple of type A,_1, then there is a birational quasi-isomorphism

G : (GLy, GCl (T)) --» (GL,,,GCH(T)). If Q is defined as the map Q, but with respect to the BD

triple f‘, then G = Qo0 Q. As a map G : (GLH,W%) N (GLn,TFI\), it is a Poisson isomorphism if
the rg parts of 77% and W} are the same. The marked variables for G are given by

{hi-i—l,z'-i—l | 1 €19 \ fg} (17)

For more explicit formulas of G, refer to [3, Section 4.4, Section 4.5].
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1.2 Initial extended cluster

The initial extended cluster comprises three types of functions: c-functions, ¢-functions and h-
functions. Only the description of the h-functions depends on the choice of the Belavin-Drinfeld
triple.

Description of ¢- and c-functions. For an element U € GL,,, let us set

(I)kl(U) — [(UO)[n—k-‘rl,n] U[n—l—i—l,n] (UZ){n} . (Un—k—l-‘rl){n}] , k’l > 1’ k+1 <n (18)
(—1)k0+D n is even,
Skt 1= _ _ B . (1.9)
(—1)(=D/2HEE=1/2H0-1)/2 s odd.
Then the p-functions are given by
SOkl(U) = Skl det (I)kl<U). (1.10)
The c-functions are uniquely defined via
det(I +AU) = Nsici(U) (1.11)

i=0
where s; 1= (—1)i(”_1) and [ is the identity matrix. Note that ¢ = I and ¢, = det U.
Description of the h-functions. Let IT be a set of simple roots of type A, —1 and I" := ("1, ', )
be a BD triple. We identify IT with the interval [1,n—1]. For a given o € II\T'g, set oy := y(¢—1),

t > 1. Recall that the sequence S7(ap) := {at}i>0 is the y-string associated to ag; y-strings
partition II. For each y-string S7(ag) = {ap, a1,...,m}, for each i € [0,m] and j € [o; + 1, 1], set

hagi1,(U) = (=1 det[FONE", oy TT detlF@) e (1.12)

t>i+1

where ¢;; is defined as
gij = —i)(n—1), 1<i<j<n. (1.13)

We refer to the functions h;j, 2 < i < j < n, together with h11(U) := det U as the h-functions.

Frozen variables. In the case of QCZ(I‘, GL,), the frozen variables are given by the set
{Cl, Co, ... ,Cnfl} U {h¢+17i+1 | x=ait \ FQ} U {hn}. (1.14)

In the case of QCIL(I‘, SLy,), h11(U) = 1, so this variable is absent. The zero loci of the frozen vari-
ables foliate into unions of symplectic leaves of the ambient Poisson variety (GLy,, WI‘) or (SLy, mh).
Moreover, the frozen h-variables do not vanish on SL] .

Initial extended cluster. The initial extended cluster ¥y of gc}l (T, GL,,) is given by the set
{hij ’ 2<1<3< n}U{gokl ‘ ki1>1, E+1< n} U{Cl,...,cn_l}U{hH}. (1.15)

The initial extended cluster of QC};(I‘, SLy,) is obtained from ¥q via removing h;.
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A generalized cluster mutation. In the initial extended cluster, only the variable @17 is

equipped with a nontrivial string, which is given by (1,ci,...,cp—1,1). The generalized muta-
tion relation for ¢q; reads
n
P11P1 = ZCMPSWTET' (1.16)
r=0

Other mutations of the initial extended cluster follow the usual pattern from the theory of cluster
algebras of geometric type.

2 Summary of the g-convention

In this section, we outline the construction of birational quasi-isomorphism for QC;(I‘), as well as
the construction of the initial extended cluster. For all the other information, refer to the main

paper [3].
2.1 The maps F°P, Q°°? and G°P

Notation. For a generic element U € GL,,, the element U, € GL, is a unipotent upper triangular
matrix and Ug € GL,, is a lower triangular matrix, such that U = U, Ug.

The map F°P. Let I' := (I';,T'2,7) be a BD triple of type A,_;. Define the sequence F.* :
GL,, --+ GL,, of rational maps via

]-"gp(U) =U, ]:,?p(U) = Uﬁ[f,?fl(U)Jr], k> 1. (2.1)
The birational map F°P : GL,, --+ GL,, is defined as the limit

FP(U) == lim FP(U). (2.2)
k—o0
Since ~ is nilpotent, the sequence F.* stabilizes at k = deg~, so FP(U) = ]:ggg ,(U). The inverse
of F°P is given by
(FP)HU) = UA(U+) " (2.3)

The map F°P is neither a Poisson map nor a quasi-isomorphism. However, by means of F°P one
can construct Poisson birational quasi-isomorphisms in the g-convention. For various invariance
properties of F°P, refer to [3, Section 7.1].

Birational quasi-isomorphisms. Define the birational map Q° : GL, --+ GL,, via

QP(U) = pP (W)U (pP(U)) ™", pP(U) = [[BI'(U). (2.4)
i=1
The inverse of Q°P is given by the map
(QP)"1(U) := FP(U) i= F(FP(U)+)  FP(U). (2.5)

Let W} and WSTt 4 be the Poisson bivectors associated with an arbitrary BD triple I' and I's¢q (of type

Ap—1), respectively. If the rg parts of 7TI-‘ and Wltd are the same, then Q°P : (GL,,, Wltd) --» (GL,, 7TI—1>



is a Poisson isomorphism. Moreover, as a map Q°P : (GLn,QCE(Fstd)) -—» (GLn,gC;(I‘)), it is a
birational quasi-isomorphism, with the marked variables given by

{gi+141 [ i €T} (2.6)

If I' < T is another BD triple of type A,_1, then there is a birational quasi-isomorphism
geop . (GLn,gC;fL(I‘)) - (GLn,gC;rl(I‘)). If Q° is defined as the map Q°P, but with respect to
the BD triple T, then G = Q% o Q°. As a map G°P : (GLn,TFF) - (GLn,TrI‘), it is a Poisson
isomorphism if the ro parts of 77}, and 77; are the same. The marked variables for G°P are given by

{gir1is1 |1 €T\ T} (2.7)
Explicit formulas for G°P can be obtained from explicit formulas for G (refer to [3, Section 4.4,
Section 4.5, Section 7.3]).
2.2 Initial extended cluster

The initial extended cluster comprises three types of functions: c-functions, ¢-functions and g-
functions. Only the description of the g-functions depends on the choice of the Belavin-Drinfeld
triple.

Description of ¢- and c-functions. For an element U € GL,,, let us set

P, (U) == [(UOHLH pltd (o2 o (unEO U] k> 1, k< (2.8)
- (—1)k+D) n is even, 50
Skl = (—1)(n=D/2+k(k=1)/2410-1)/2  p is odd. (2.9)

Then the ¢-functions are given by
Gr1(U) := s det CD%Z(U) (2.10)

The c-functions are uniquely defined via
det(I +A\U) = Z Nsiei(U) (2.11)
i=0

where s; = (—1)i(”_1) and [ is the identity matrix. Note that ¢y = I and ¢, = detU (the
c-functions are the same in both g- and h-conventions).

Description of the g-functions. Let II be a set of simple roots of type A,_1 and let T" :=
(I'1,T2,v) be a BD triple of type A,_1. Let F°P : GL, --» GL, be the rational map defined
by (2.2). We identify II with the interval [1,n — 1]. For a given o € I\ 'y, set ot := v*(ow—1),
t > 1. Recall that the sequence SV (ag) := {a}y>0 is the y*-string associated to ap; 7*-strings
partition II. For each ap € IT\ T'; and the associated y*-string S7" (ap) := {a;}1,, for every
k € [0,m] and i € [oy, + 1, n], define

0 ap+1n—itagp+l1 o at+1,n
Girop11(U) = det[FoP(U)] o FHm et H det[FoP(U)]2 1. (2.12)
t>k+1

We refer to the functions g;;, 2 < j < i < n, together with g11(U) := det U as the g-functions.
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Frozen variables. In the case of QC; (T, GL,,), the frozen variables are given by the set

{61,02, - ,Cn_l} U {gi+17i+1 ‘ x=ait \ Fl} U {911}- (2.13)

In the case of QCIL(I‘, SL,), g11(U) = 1, so this variable is absent. The zero loci of the frozen vari-
ables foliate into unions of symplectic leaves of the ambient Poisson variety (GLy,, W{:) or (SLy, W})
Moreover, the frozen h-variables do not vanish on SL].

Initial extended cluster. The initial extended cluster ¥q of QC;(F, GL,,) is given by the set
{gij12<ji<i<n}U{du|ki>1 k+l<n}U{ci,...,cn1}U{gn}. (2.14)

The initial extended cluster of QC; (T, SL,,) is obtained from ¥q via removing hqj.

A generalized cluster mutation. In the initial extended cluster, only the variable ¢1; is
equipped with a nontrivial string, which is given by (1,ci,...,cp—1,1). The generalized muta-
tion relation for ¢i1 reads

gl =Y crdh s (2.15)

r=0
Other mutations of the initial extended cluster follow the usual pattern from the theory of cluster
algebras of geometric type.

3 Relation between the h- and g-conventions

In this section, we briefly mention the relation between the g- and the h-conventions. Let I' :=
(T'1,T2,7) be an arbitrary BD triple of type A,_1.

Variables. The c-variables in both the h- and the g-conventions are the same. For the other
variables in the initial extended clusters, the connection is as follows.
1) For ¢- and ¢-functions, ¢g(Wy 'UWy) = g (U) where Wy = Z?:_ll(—l)i+16n7i+1,i.

2) For g;; and hj; from the initial extended clusters of QC}:(I‘) and QC;(I‘OP), gij(U) = (—=1)%ih;(UT)
where €, 1= (n — j)(i — j).

Quivers. The initial quiver Q4(T') for the g-convention can be obtained from the initial quiver
Qr(T°P) for the h-convention via the following steps:
e Replace each vertex ¢y, with ¢p;, 2 < k+1 <n, k,1 > 1 and each hj; with g;;, 2 < j <i < n;
e For each g;;, 2 < j <1 < n, reverse the orientation of the arrows in its neighborhood;
e For the vertices ¢y, with k +1 =n and k£ > 2, add an arrow ¢ — dr—1 141;
e Remove the arrow ¢1,—1 — g11-

Mutation equivalence. In n = 3, the initial extended cluster of QCI] (T, GL3) can be obtained

from the initial extended cluster of QCL(I‘,GLg) (for any T') via a sequence of mutations (see
Section 4.3). We conjecture that there is no such sequence in n > 4.
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Birational quasi-isomorphisms. Define F, Q and G relative the BD triple I', and define F°P,
Q°P and G°P relative the opposite BD triple I'°P. Then F(UT) = FoP(U)T, Q(UT) = QP(U)7,
Gg(Uu"r) =gru)".

4 Intrinsic problems

4.1 The Poisson structure F,(r}.)

Let T' := (I';,T'2,y) be a BD triple of type A,,_1. Define a rational map C : GL,, --» GL,, via
%
CU):=U-p(U)=U[[4(U-), UecGL,. (4.1)
k=1

The map C is in fact birational, with the inverse given by
cYU)=U-3"(U_)"', UecGL,. (4.2)

Set mF 1= ]-"*(77;). Since F¢(U) = F(U)7*(F(U)-)"1, the following diagram is commutative:

(GLn, ) =2+ (GLy, ) (4.3)
[ _ -
Fl P
v o7 C
(GL’I’L77T]:)

Moreover, all the arrows are birational Poisson isomorphisms (provided the ry-parts are the same
for all Poisson bivectors). The Poisson bracket {-,-}r that corresponds to 7 is given by

{f,9}F =(Romo[U, Vu 1, [U, Vug)) + (mo[U, Vu f], Vig)+
Vi f, Vig) — (m Vi f, Vig)+

Homs VB V) — (VE. == Vi)t (14)
Hr<VEf, Adysep ) 1_177T>V59> — (Adys=_)— T 77r>V§f, m<Viig).
Recall that F~! is given by
FYU)=4W_)"' U UeGL,. (4.5)

We find it very intriguing that the maps C~! and F~! have very similar formulas. In a sense,

mF sits in between 77; q and W{:, and it can be twisted into either of the Poisson structures via an

application of (F~1), or (C71),. Is there anything interesting that one can say about 77, as well
as about the induced compatible generalized cluster structure on GL,?

4.2 Are there cluster structures for F,,’s?

Let us fix a BD triple I' := (I'1, 2, y) of type A,,_1 and set

{f,9}+(U) =7 V{1, VEg) — (Vi £, Vig)+

4.6
+(Romo[Vu £, U], [Vug,Ul) — (mo[Vu £, U], Vig), U € GLy, (4.6)
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where VEf = U - Vyf and VEf = Vi f - U. Let hy(U) := det U[[Z;j]_j 4~ During a numerical

experimentation’, we noticed that
{log hij, log huss Yoy = {log iy (i), 1og F (hws) - = {log F* (hij), 1og F* (Fes) 1y

for all m € [0,deg~] (ro elements are assumed to be the same). A natural question arises: does there
exist a sequence of Poisson varieties? (V;,, 7,,) such that 7, reduces to {-,-}, for the flag minors
of Fp,, and such that there is a generalized cluster structure GC,, on V,,, compatible with 7,,?

4.3 Are the g- and h-conventions equivalent?

By the equivalence we mean that the initial extended clusters of QC;&(I‘) and QC;(I‘) can be obtained
from one another via a sequence of mutations (and the variables are equal as elements of O(GLy,)).
In [3] we verified that the frozen variables in gC;(I‘,GLn) coincide with the frozen variables in
gc,t(r, GL,,) for any BD triple I'. As for the equivalence, we were able to confirm for n = 3 and
all BD triples I' that gC;(F,GLg) = QC};(I‘,GLg). We conjecture that they are not equivalent
for n > 4. Below we provide examples of mutation sequences that transform the initial cluster of
QC}:(I‘, GL3) into the initial cluster of QCZ(I‘, GL3). In each case, we know all such sequences of
minimal length (available upon request). Let us denote by ¢}, and h;j the variables in the resulting

extended cluster in QCIL(I‘, GL3).

Case I'y =I's; = (). The minimal length is 10, the number of distinct sequences of minimal length
is 8. An example of such a sequence:

P12 = P21 = P11 — hag — @12 = hagz — 11 — P21 — hag — pa1. (4.7)

The correspondence between the variables is given by ¢}, (U) = ¢ (U) and hi;(U) = g;i(U).

Case Iy = {2}, I's = {1}. The minimal length is 11 and the number of sequences is 6. An
example of such a sequence:

P12 = P21 = 11 — haa = haz = w12 = hag — Y11 = Y21 — haz = Y21, (4.8)
The correspondence between the variables is given by ¢}, (U) = ¢ (U), his(U) = g5 (U), hiy(U) =
933(U), has(U) = g22(U).

Case Iy = {1}, I's = {2}. The minimal length is 13 and the number of sequences is 30. An
example of such a sequence:

w12 = hag = @12 = @11 = haz = Y21 = @11 = hag = hag — @12 = @11 = Y21 = 11. (4.9)

The correspondence between the variables is given by ¢}, (U) = ¢ri(U), hiys(U) = g5, (U), hi3(U) =
922(U), haa(U) = g33(U).
"We have verified this identity in n = 3, n = 4 and n = 5 for all BD triples.

20f course, one can set Vj, to be the spectrum of the ring generated by the flags of F,,,. We are interested in the
largest possible variety V,,, C SL,, with the mentioned properties.




4.4 How is GC|(T,SL!) related to GC(T, D(SL,))?

In the work [1], the initial extended cluster of the generalized cluster structure QCIL(Fstd,SLL)
was obtained from the initial extended cluster of GC(Tstq, D(SLy)) via a sequence of mutations
denoted as S. A natural question arises: if T' is any aperiodic oriented BD triple of type A4,_1,
can the initial extended cluster of QC};(I‘, SL!) be obtained from the initial extended cluster of
GC(T, D(SL,,)) that was described in [2]? We found such mutation sequences® in n = 3 and n = 4
for all BD triples. We conjecture that the same holds for n > 5; however, we do not see a relatively
simple way of proving it for an arbitrary n (as one can see below, the mutation sequences become
rather long and unpredictable).

Let us recall that the initial extended cluster of GC(I', D(SL,,)) comprises 5 types of functions:
the g-functions, the h-functions, the ¢-functions, the f-functions and the c-functions. To resolve
the conflict of notation, we will mark the g- and h-functions in GC(T", D(SL,)) with a bar. The §
sequence in n = 3 is given by

S 1= ga2 = ga2 — G33 — 11 = ga2, (4.10)
and in n =4,

S :=ga2 — 32 — 43 — G22 — §33 — Jaa — fo1 — fu1 — fi2 —

_ _ _ _ _ (4.11)
— §42 — 32 — §43 —7 33 — g42.

Below we list the mutation sequences for n = 3 and n = 4, as well as the correspondence between
the variables. The variables in the resulting extended cluster of GC(I', D(SL,,)) will be denoted
as g, W' and f’. The c- and g-variables for GC(T', D(SL,,)) and QCL(I‘, SL!) are the same. The
correspondence between the coordinates (X,Y’) in D(SL,) and U in SL,, is given by

D(SL,) 3 (X,Y) = U:= XY €SL,.

Note that in the case of D(GL,), the below correspondence between the variables is up to an
additional factor of (det X)? for some ¢ that depends on the given variable.

Case I'y =I's = (), n = 3. The mutation sequence is given by S. The correspondence is given by
géﬁ(X’Y) = h33(U)7 fil(Xv Y) - hQQ(U)v gé2(Xﬂ Y) - h23(U)'

Case I'; = {2}, I's = {1}, n =3. The mutation sequence is given by
S — his — hoo. (4.12)
The correspondence is given by hhy(X,Y) = h33(U), f11(X,Y) = hao(U), Ghe(X,Y) = has(U).
Case I'y = {1}, I's = {2}, n = 3. The mutation sequence is given by
S — h1z — hag — hag — 33 — 2o — hiz — haz — hgs. (4.13)

The correspondence is given by g43(X,Y) = ha3(U), hi3(X,Y) = hao(U), 5,(X,Y) = h3(U).

3However, we didn’t verify whether the sequences are of minimal possible length.



Case I'1 = Ty = 0, n = 4. The mutation sequence is given by S. The correspondence is
given by gip(X,Y) = haa(U), 95(X,Y) = h3a(U), §5o(X,Y) = hoa(U), §33(X,Y) = has(U),
[01(X,Y) = has(U), fio(X,Y) = haa (V).
Case I'| = {3}, I's = {1}, n =4. The mutation sequence is given by
S — 512 — BQQ. (4.14)

The correspondence is given by hhy(X,Y) = haa(U), g4o(X,Y) = h3a(U), Ghe(X,Y) = hau(U),
§é3(X,Y) = h33(U)7 fél(Xv Y)= h23(U)7 f{2(X7 Y) = h22<U)'
Case I'} = {3}, I's = {2}, n =4. The mutation sequence is given by

S — iL13 — 523 — fL33 — f11. (4.15)
The correspondence is given by f11(X,Y) = has(U), g52(X,Y) = haa(U), ghe(X,Y) = hos(U),
933(X,Y) = hgg(U), f5,(X,Y) = has(U), f1a(X,Y) = ha(U).
Case I'} = {1}, I's = {3}, n = 4. The mutation sequence is given by

S —h14 — hoa — h3g — hag — Gaa — Gag — Go2 —
—h14 — hog — hag — haa = Gaa — G2 — fo1 — (4.16)
—>7114 — BQ4 — Bg4 — 7144.

The correspondence is given by gjo(X,Y) = has(U), g52(X,Y) = h3a(U), g43(X,Y) = hau(U),
33(X,Y) = ha3(U), gaa(X,Y) = haz(U), Wiy (X,Y) = haa(U).

Case I'} = {1}, I's = {2}, n = 4. The mutation sequence is given by

S —hig — haz — hag — fi1 — Go2 —

—h1g — haz — h3g — G2 — fa1 — (4.17)
—>?L13 — 523.
The correspondence is given by §4o(X,Y) = haa(U), g5o(X,Y) = haa(U), f11(X,Y) = hos(U),

G53(X,Y) = ha3(U), h3(X,Y) = hoz(U), hyz(X,Y) = haa(U).

Case I'} = {2}, I's = {3}, n =4. The mutation sequence is given by
S = his = hag = hag — has — Gaa — Gaz — G2 — haa — hag — hag — hag — gua. (4.18)

The correspondence is given by gj5(X,Y) = haa(U), g45(X,Y) = haa(U), ghe(X,Y) = hos(U),
9214(X7Y) = h33(U)7 fél(Xv Y) = h23(U)7 f{2(X7 Y) = h22<U)'

Case I'y = {2}, I's = {1}, n =4. The mutation sequence is given by
S — 512 — ;LQQ — g32 — 512. (4.19)

The correspondence is given by gjo(X,Y) = haa(U), hhye(X,Y) = h3a(U), Ghe(X,Y) = hau(U),
h1o(X,Y) = hgs(U), f5,(X,Y) = has(U), fi5(X,Y) = haa(U).
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Case of Cremmer-Gervais, I'1 = {2,3}, I's = {1,2}, y(i) =i —1, i € I'y. The mutation
sequence is given by

S — hig = haa — hig — haz — h3z — g3z — hia = 32 — §33 — f11. (4.20)
The correspondence is given by fi;(X,Y) = hys(U), hho(X,Y) = has(U), ghe(X,Y) = hoy(U),
12(X,Y) = hss(U), f5,(X,Y) = hog(U), f1o(X,Y) = hoa(U).
Case of Cremmer-Gervais, I'y = {1,2}, I's = {2,3}, 7(i) =i+ 1, i € T'y. The mutation
sequence is given by

S —hig — haz — hg3 — hig — hog — hga — has — fi1 — Goo — Gaa — Gaz — J32 —
—>Bl3 — st — 7133 — 514 — 524 — f_L34 — 7144 — Gaa — fo1 — g32 — g22 — h1g — (4.21)
—rhog — h13 — has — haa — hagz — g33 — haa — f11 — hs3.

The correspondence is given by gj5(X,Y) = haa(U), g45(X,Y) = haa(U), g43(X,Y) = has(U),
914(X,Y) = has(U), f11(X,Y) = has(U), h3(X,Y) = haa(U).
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5 Examples in n = 3 in the h-convention

5.1 The standard BD triple

The initial quiver is illustrated in Figure 1.

h33

Figure 1. The initial quiver for QCIL(I‘SM, GL3).

The initial variables. The variables in the initial extended cluster are given as follows:

(U) = tr(U), ex(U) = = (tr(U)? — tr(U2));

2!
021(U) = w13, ¢12(U) = det U[[i’;’]]
P (U) = — det B;z Egi;;ﬂ = ugg det U[[i’;]] + uiz det U[{ll,é‘?};
ha3(U) = —uggugs — uius, hoa(U) = ugzdet U[Ej?f’]] + ugz det U{[Ql’é]};

hll(U) =det U, hgg(U) = U33.
Some 1-step mutations.

u12 u13 2,3 2,3
011 (U) = det [(U2)12 (U2)13] = u12 det U[[l,Q}] + w13 det U{[1,3]}'

12
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52 T, ={2},T,={1}

The initial quiver is illustrated in Figure 2.

Figure 2. The initial quiver for QCIL(I‘, GL3) with I'y = {2}, T'y = {1}.

The initial variables. All the variables in the initial extended cluster are as in QCIL(I‘Std, GL3)
except the variable hgs, which is given by

has (U) = ugs det U] + uzy det U3 (5.7)

Birational quasi-isomorphisms. The birational quasi-isomorphism
Q: (GL3,GC},(Tsia)) --» (GLs, GCL(T))

is given by

{1,3}
B det U[273]

o (2,3] °
det U[273]

QU)={U—-a(lU)es)U(I + a(U)esz), a(U):

13



53 I, ={1},T,={2)

The initial quiver is illustrated in Figure 3.

Figure 3. The initial quiver for QCIL(I‘, GL3) with T'y = {1}, T'y = {2}.

The initial variables. All the variables in the initial extended cluster are as in QCIL(I‘Std, GL3)
except the variables hog and hgo; these are given by

hgg(U) = —U23U33 — U13U32, hQQ(U) = ugg det U[[j”%} + ugg det U[{Qfé?} (5.9)
Birational quasi-isomorphisms. The birational quasi-isomorphism
Q : (GLs, GC} (Tua)) — (GL, GC}(T))
is given by "
QU) = (I — a@)ea)U(I +a(U)esr), a(U):= —2. (5.10)

u3s3
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6 Examples in n =4 in the h-convention

6.1 The standard BD triple
The initial quiver for QCL(I‘Std, GLy4) is illustrated in Figure 4.

h4-4-

Figure 4. The initial quiver for QCIL(I‘SM, GLy).

The initial variables. The ¢-variables are given by

ua (U (U)a
e11(U) = —det |uga (U?)2s  (U?)a4
uza (U*)za (U?)3a

Y

uiy w1 (U?)14
@12(U) = det uU23 U4 (U2)24
uss uss (U?)34

p31(U) = —u1a, ¢22(U) = det U[[fé]]’ o13(U) = — det U>Y.

, pn(U) = det [UM (U2)14] ;

The h-variables are given by

h24(U) = U924, th(U) = det U[g)”;]}, ]’LQQ(U) = det U[[;’:]];
h3a(U) = —usq, hss3(U) = det U[[:?::]], hasa(U) = uyq.
The c-variables are given by

e (U) = —trU, ep(U) = % (6e(U)? — tx(U?)) |

e3(U) = —% (e (U) — 36c(U) tx(U) + 262(U%)).

15



List of 1-step mutations. Here’s what one obtains after a 1-step mutation of the initial cluster
in each direction:

/ - [3,4] ug (U?)14 uis (U?)1a 2,4}

©15(U) = det Uy det [U34 (U2)ss + wss (U)o det Uy s (6.8)
ulg U1z (U?)ua

@ (U) = —det |ugs (U?)23 (U?)2s| ; (6.9)
uzs (U%)zz (U?)34

P (U) = —det USSP ol (U) = —una det U Y] — waades UG, (6.10)

(p'QQ(U) = —uy4 det U[g%él]l} — ugq det U[g?é?} — ugy det Ug”’g‘f. (6.11)

4 A4
La(U) = — det U{[i?}}, L(U) = — det U{[:;A]}; (6.12)
b3(U) = ung det Ul — usg det Uiyl s . (6.13)

16



6.2 Cremmer-Gervais i +— 17+ 1

The initial quiver for QCIL(I‘, GLy) is illustrated in Figure 5.

Figure 5. The initial quiver for QCIL(F, GLy) for 'y ={1,2}, T'a ={2,3}, v:i— i+ 1.

The initial variables. In the initial extended cluster, all cluster and frozen variables are given
as in QCIL (Tsta, GLy) except for the variables hag, hos, hog, h33, hss. Let us set

((U) = det Uy yluas + det U uas + det Uy uso; (6.14)
fQ(U) ;= det U[gif]l}uM + det U{{;’f}}u% + det Uéi’f}%UQ; (6.15)
(3(U) = det Uy g + det U uas + det Uy uso. (6.16)

Then the h-variables are given by:

hoa(U) = ugq - 61(U) +u14l2(U), h34(U) = —uzqugq — ugqugs — urqus2, haa(U) = ugg;  (6.17)

has(U) = det U/ 1 (U) + det Uy L () + det U5l 5(U), has(U) = (1(U); (6.18)
has(U) = det UG 1 (U) + det Uy s 1 £o(U) + det Uyl £a(U). (6.19)

Birational quasi-isomorphisms. TBD
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6.3 Cremmer-Gervais i — 17— 1

The initial quiver for QCIL(I‘, GLy) is illustrated in Figure 6.

h4-4-

Figure 6. The initial quiver for QCIZ(I‘, GLy4) forI't ={2,3}, I'a ={1,2}, v:i—i—1.

The initial variables. In the initial extended cluster, all cluster and frozen variables are given
as in QCIZ(Fstd, GLy4) except for the variables hsy, h33, has. These are given by:

h34(U) = —ugy det U[[;’fﬁ — ugq det U[{QE}UBA]; (6.20)
hag(U) = det Uy det Uyl + det U] det UL 4 det U5 det Uy 191 (6.21)

haa(U) =uaq (det Ul det U + dee Ul ) aet U0 + dev U] det 0, 319

[3,4] [2,4] {2,4} (2,4] [2,3] [2,4]

+ det U{{Ql”ff det U[{;i}U[:aA] 4 det UL qot b2V}

[3,4] [2,4]

+
Fusy (det UL det UZY + det UL det UL 4 det U2 det U“’2]U{4}) + (6.22)
]
23] [2,4] )

gy (det Ui qet 24

Birational quasi-isomorphisms. TBD
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7 Examples in n =4 in the g-convention

7.1 The standard BD triple
The initial quiver for QC;(I‘Std, GLy) is illustrated in Figure 7.

g11

Ga4

Figure 7. The initial quiver for QC;(I‘std, GLy4).

The initial variables. The ¢- and c-variables, as elements of O(GLy), are given by the following

formulas:

ugr (U1 (U)an ug uz2 (U%)a
¢11(U) =det |uzi (UHaz1 (U)a1|, ¢12(U) = —det |uzi uze (U*)m
ug (U (U)a ugr uge (U?)q

_ uz1  (U?)a1
921(U) = det [U41 (U n

)

] , $31(U) = ua1, ¢22(U) = det U[Ejﬁ, $13(U) = det U[[zlj]]?

(U) = —trU, ep(U) = % (62(U)? — tr(U?))

es(U) = —% (s2(U)? = 3te(U) tx(U?) + 26e(U%)).

The g-variables are given by

g (U) = det U, g;;(U) =det UL 2 <j<i<n.
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7.2 Cremmer-Gervais ¢ — ¢ — 1

The initial quiver for QC;(I‘, GLy4) is illustrated in Figure 8.

Figure 8. The initial quiver for gC};(F, GLy) forTh ={2,3}, To={1,2}, v:ir—i—1.

The initial variables. Let us set

G(U) = det Ul yluag + det U Huss + det UL s
(o(U) = det Uy uaa + det U sy + det Uy uas;
(3(U) = det Uy yluas + det U usy + det UL 5 un.

The g-variables are given by the following formulas:

912(U) = wag - £1(U) + ualo(U), ga3(U) = waztias + waousa + v, gaa(U) = waa;
, 2
932(U) = det U0y (U) + det UL 65(U) + det UG 13(U), - gas(U) = 64(U);

g22(U) = det Uy 13 (U) + det US P00 + des U 7171 e3(0).
Birational quasi-isomorphisms. There is a birational quasi-isomorphism

°P 1 (GL4, GCl(Tg1a)) --» (GL4, GCI(T)), QP(U) := p°®(U)U (p°P(U)) "

where the rational map p°P : GL,, --+ GL,, is given by

" det U " "
pP(U) = <I + 34612) I+ %612 + e+ —eg |
U4 det U, 3 ’4] U44 U44

20
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The marked variables for Q° are gs3 and g44. Define the BD triples T' := ({2},{1},2 — 1) and
I' := ({3},{2},3 — 2). There is a pair of complementary birational quasi-isomorphisms

G : (GL4,GCJ(T) --» (GL4,GC}(T)), G’ : (GL4,GCH(T)) --> (GL4, GCJ(T)).

They are given by

gop(U) — Gop(U) U - GOP(U)_l, Gop(U) —

(GPY(U)=G'(U)-U-G'U)™, GU):= T+ a1(U)erz + aa(U)ers),

det U U@,

(2,4} 144 + det

Oél(U) =

3,4]
det U[& A

Ugq + det U [?,Z]l} U34 ’

(

(7.14)

u u u
I+ 34612> . (I + ﬁ613 + 34623) ; (7.15)
U44 Ua4 U4q4

(7.16)
det Ulyyluas + det U ugy

ag(U) = — 5 o (117
det U[37’4] uqq + det U[S#’l} U34

The marked variable for G is g4, and the marked variable for G’ is g33.
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